Topic 14: Bonding (5 hours) # 14.1 Shapes of molecules and ions 1 hour | | Assessment statement | Obj | Teacher's notes | |--------|---|-----|--| | 14.1.1 | Predict the shape and bond angles for species with five and six negative charge centres using the VSEPR theory. | | Examples should include PCl ₅ , SF ₆ , XeF ₄ and PF ₆ ⁻ . Aim 7: Interactive simulations are available to illustrate this. | # 14.2 Hybridization #### 2 hours | | Assessment statement | Obj | Teacher's notes | |--------|--|-----|---| | 14.2.1 | Describe σ and π bonds. | 2 | Treatment should include: σ bonds resulting from the axial overlap of orbitals π bonds resulting from the sideways overlap of parallel p orbitals double bonds formed by one σ and one π bond triple bonds formed by one σ and two π bonds. | | 14.2.2 | Explain hybridization in terms of the mixing of atomic orbitals to form new orbitals for bonding. | 3 | Students should consider sp, sp ² and sp ³ hybridization, and the shapes and orientation of these orbitals. TOK: Is hybridization a real process or a mathematical device? | | 14.2.3 | Identify and explain the relationships between Lewis structures, molecular shapes and types of hybridization (sp, sp ² and sp ³). | 3 | Students should consider examples from inorganic as well as organic chemistry. | ## 14.3 Delocalization of electrons ## 2 hours | | Assessment statement | Obj | Teacher's notes | |--------|--|-----|---| | 14.3.1 | Describe the delocalization of $\boldsymbol{\pi}$ electrons and explain how this can account for the structures of some species. | | Examples should include NO ₃ ⁻ , NO ₂ ⁻ , CO ₃ ²⁻ , O ₃ , RCOO ⁻ and benzene. TOK: Kekulé claimed that the inspiration for the cyclic structure of benzene came from a dream. What role do the less rational wavs of knowing play in the | | | acquisition of scientific knowledge? What distinguishes a scientific from a non-scientific hypothesis: its origins or how it is tested? | |--|---| |--|---|