	Moles and Solution Calculations: Review
1.	Find the mass of: a) 1 average antimony atom b) 0.2 moles of carbon dioxide [CO ₂] c) 1.5 moles of aluminum hydroxide [Al(OH) ₃] d) 6.47 x 10 ⁻² mol of nitrogen dioxide [NO ₂]
2.	Find the number of atoms in: a) 4.0 g of aluminum b) 10. g of sodium
3.	Calculate the number of molecules in 1.00 g of N ₂ .
4.	Calculate the number of moles of: a) 284 g of Na ₂ SO ₄ . b) 0.100 mg of NaF
5.	a) A compound consisting of carbon, hydrogen and oxygen has a mass of 40.85 g. Analysis shows that the compound contains 10.90 g of carbon and 0.90 g of hydrogen

- a) A compound consisting of carbon, hydrogen and oxygen has a mass of 40.85 g. Analysis shows that the compound contains 10.90 g of carbon and 0.90 g of hydrogen. What is the percentage composition of the compound?

 (Answers: 26.7% C, 2.2% H, 71.1% O)
 - b) Analysis of an ore of calcium shows that it contains 13.61 g of calcium and 21.77 g of oxygen in a sample of mass of 46.28 g. What is the percentage composition of this compound? (29.4% Ca, 47.0% O, 23.6% unknown)
- 6. a) Analysis of a salt results in the following composition: 3.47 g of sodium, 2.12 g of nitrogen, and 7.27 g of oxygen. What is the empirical formula for this salt? (NaNO₃)
 - b) A barium salt is found to contain 21.93 g of barium, 5.12 g of sulfur, and 10.24 g of oxygen. What is the empirical formula of this compound? (BaSO₄)
- 7. a) The analysis of a compound shows that it is made up of 21.9% Na, 45.7% C, 1.9% H, and 30.5% O. What is the molecular formula of the compound if its molecular mass is $210.0 \text{ u?} (\text{Na}_2\text{C}_8\text{H}_4\text{O}_4)$
 - b) An unknown compound is found tot have a molecular mass of 75.0 u and to contain 32.0% carbon, 6.7% hydrogen and 8.7% nitrogen, with the rest of the molecule consisting of oxygen. What is the molecular formula of the compound? $(C_2H_5NO_2)$
- 8. $2C_2H_2 + 5O_2$ ----> $4CO_2 + 2H_2O$.

Refer to the above equation to determine the number of moles:

- a) of water produced by 1.75 moles of acetylene, C ₂H₂;
- b) of carbon dioxide produced in .3 moles of oxygen was used;
- c) of water produced if 4 moles of oxygen was used.
- 9. a) What mass of water and diphosphorus pentoxide will be needed in order to produce 95.5 g of phosphoric acid? $P_2O_5 + 3H_2O$ -----> $2H_3PO_4$ (69.2g P_2O_5 ; 26.3 g H_2O)
 - b) How much aluminum is needed to replace all of the iron from 27.8 g of iron(lll) oxide in a single displacement reaction? (9.39 g)
 - c) What mass of iron metal will be required to produce 20.8 g of iron(lll) oxide in an addition reaction with pure oxygen? (14.5 g)
 - d) $2KC1O_3(s)$ -----> $2KCl(s) + 3O_2(g)$
 - i) What mass of KClO₃ must be decomposed to give 0.96 9 of oxygen?
 - ii) How many moles of KCl will be produced during this same reaction? (2.5 g of KC1O₃; 0.020 mol KCl)

10. When copper is heated in the presence of oxygen, a black oxide of copper is formed. If 8.24 g of Cu(s) reacts with 2.08 g of $O_2(g)$ what is the formula for the oxide formed?

$$(0.129 \text{ mol}) 2 \text{ Cu} + (0.065 \text{ mol}) \text{ O}_2 \longrightarrow 2 \text{ CuO}$$

- How many moles of oxygen are required to react with 9.7 g of magnesium to produce magnesium oxide? What mass of oxygen is required? (Write a balanced equation first)

 (O₂: 6.4 g) (MgO: 16 g)
- 12. In the following equation: $2KClO_3 \longrightarrow 2KCl + 3O_2$
 - (a) How many grams of KClO₃ must be decomposed to yield 0.96 g of oxygen? (2.5 g)
 - (b) How many moles of KCl will be produced during this same reaction? (0.020 mol)
- 13. Sulfuric acid can be prepared by reacting sulfur dioxide, oxygen, and water. The <u>unbalanced</u> chemical reaction is:

$$\frac{2 \operatorname{SO}_{2}(g) + \operatorname{O}_{2}(g) + 2 \operatorname{H}_{2}\operatorname{O}(1)}{2 \operatorname{H}_{2}\operatorname{SO}_{4}(ag)}$$

If 15.0 g of oxygen and 50.0 g of sulfur dioxide are reacted with an unlimited quantity of water:

- (i) What is the limiting reagent? (O_2)
- (ii) How much sulfuric acid will be formed? (76.5 g)
- 14. How many grams of CO₂ gas will be produced when 8.50 g of methane react with 15.9 g of oxygen? (Note: You must first write the balanced chemical reaction and determine the limiting reactant).
- 15. A chemist makes nitroglycerin, C₃H₅(NO₃)₃ from glycerol C₃H₅(OH)₃ and HNO₃. The balanced chemical reaction is listed below:

$$C_3H_5(OH)_3(1) + 3 HNO_3(aq) \longrightarrow C_3H_5(NO_3)_3(1) + 3 H_2O(1)$$

If 4.1 g of glycerol and 13.5 g of HNO₃ are used to produce 8.8 g of nitroglycerin:

- (a) What is the limiting reagent?
- (b) What is the theoretical yield of nitroglycerin?
- (c) What is the actual yield of nitroglycerin?
- (d) What is the percentage yield of nitroglycerin?

Solution Chemistry: Review

- (a) What is the number of moles of Mg(NO₃)₂ needed to prepare 500 cm³ of a 0.450 mol dm⁻³ solution? (0.2 mol)
 - (b) What mass of magnesium nitrate does this amount represent? (30 g)
 - (c) Describe how you would prepare the solution. (Add 30 g of Mg(NO₃)₂ to 200 cm water in a graduated cylinder. Add water until there is 500 cm³ of solution in the cylinder)
- 2. What volume of 3.0 moldm⁻³ NaOH would be required to make 250 cm³ of 0.15 moldm⁻³ of NaOH solution? (13 cm³)
- 5. What volume of 16.0 moldm⁻³ stock nitric solution is needed to prepare 300 cm³ of 3.0 moldm³ nitric acid solution?
- 6. If 265.4 cm³ of LiOH are required to neutralize 21.7 cm³ of 0.500 moldm⁻³ HBr what is the concentration of the base? (0.0409 mol dm⁻³)
- 7. How many grams of table sugar $C_{12}H_{22}O_{11}$ are contained in 50.0 cm³ of a 0.400 moldm⁻³ solution of sugar in water? (6.85 g)
- 8. What **is** the concentration in moldm⁻³ of a solution that contains 49.0 g of hydrochloric acid in a 3.00 dm³ solution?