SCH 3UE Unit 1 – Quantitative Chemistry Unit Review Problems – Answer Key

1. a)

 $1.40 \text{ mol} \cdot \text{L}^{-1} \text{ in } 10.0 \text{mL}$ = $1.40 \text{ mol} \cdot \text{L}^{-1} \cdot 0.01$ = 0.014 mol = 0.01203 mol

i) Therefore, SnCl₂ is the reagent in excess.

 $\begin{array}{cccc} \text{Mass of XS} & \text{LR} & : & \text{SnCl}_2 \\ \text{consumed in rxn:} & & \underline{2} & : & \underline{1} \\ \hline 0.014 \text{ mol} & & x \end{array}$

Let x be #mol consumed

x = (0.014 mol)/2 = 0.007 mol consumed

 $mass = mol \cdot M_R$

 $\begin{aligned} & mass = 0.007 \; mol \; \bullet \; 189.60 \; g/mol \\ & mass = 1.3272 \; g \; SnCl_2 \; consumed \end{aligned}$

Mass remaining: $m_{rem} = 2.280 \text{ g} - 1.3272 \text{ g}$ = 0.9528 g SnCl₂ (XS) remain

ii) Therefore, 0.9528g of excess SnCl₂ remain.

To determine mass mol : mol of pcpt. Product LR : product SnI_2 formed: $KI : SnI_2$

 $\frac{2}{0.014 \text{ mol}} \quad : \quad \frac{1}{x}$

Let x be #mol SnI₂ pcpt. Formed

 $x = (0.014 \text{ mol})/2 = 0.007 \text{ mol } SnI_2 \text{ formed}$

Mass of product: $m_p = 0.007 \text{ mol} \cdot M_R$

 $m_p = 0.007 \text{ mol} \cdot 372.51 \text{ g/mol}$ = 2.608 g SnI₂ precipitate formed

iii) Therefore, the maximum mass of SnI₂ formed is 2.608g

To determine LR/XS:

mol : mol KI : SnCl₂ 0.014 : 0.01203 2 1 0.007 : 0.01203 0.01203mol, SnCl₂, is XS b)

Process Eqn.:
$$X Sn + Y I \longrightarrow Sn_X I_Y$$

Sn mass
$$4.100g - 3.385g$$

$$Process \ Eqn.: \qquad \qquad X \ Sn \qquad \qquad + \qquad \qquad Y \ I \qquad \qquad -----> \qquad Sn_X I_Y$$

Therefore the formula of the compound formed is SnI₄, Tin (IV) iodide.

2.

Elements: C H N O
% composition
$$40.45\%$$
 7.86% 15.73% 35.96%
 $100\% = 100g$ $40.45g$ $7.86g$ $15.73g$ $35.96g$
g --> mol $12.011g/mol$ $1.0079g/mol$ $14.007g/mol$ $15.999g/mol$

$$= 3.3677 \ mol$$
 $= 7.7984 \ mol$ $1.1230 \ mol$

$$Molecular\ Formula\quad \#mol = mass\ /\ M_R$$

$$= 89.0g / (89.01g/mol)$$

$$= 1(C_3H_7NO_2) = C_3H_7NO_2$$

Therefore the compound is likely Alanine, C₃H₇NO₂.

Process Eqn.:
$$2C_X H_Y + (2X + 0.5Y) O_2 ----> (2X) C O_2 + Y H_2 O$$
 Balanced Eqn.:
$$C_X H_Y + (X + 0.25Y) O_2 ----> X C O_2 + 0.5Y H_2 O$$

$$m_{CO2} = m_{CO2} / M_{RCO2}$$

$$= 1.56g / (44.095g/mol)$$

$$= 0.0354 \ mol$$

i) Therefore, 0.0354 mol of CO₂ were produced.

#mol
$$H_2O$$
 (n_{H2O}) $n_{H2O} = m_{H2O} / M_{RH2O}$
= 0.638g / (18.015g/mol)
= 0.0354 mol

ii) Therefore, 0.0354 mol of H₂O were produced.

 M_{REF} (14.0g/mol) = 4 :. 4(CH₂) = C₄H₈

c) Therefore the molecular formula of the compound is C₄H₈, butene.